

Objective. Independent. Effective.™

American Academy of Actuaries

Long-Term Care (LTC) Principle Based Reserve (PBR) Work Group

Presentation to NAIC LTC Actuarial Working Group

April 2, 2016
Warren Jones, MAAA, FSA, FCA

Copyright © 2016 by the American\ Academy of Actuaries. All Rights Reserved.

Objectives of LTC PBR Work Group

- Based on the initial request from the NAIC, the objective of the work group was to develop a prototype stochastic model to be used to help set the direction of PBR for LTC
 - The work group has completed its work and a report was released January 21, 2016
 - The report includes considerations of stochastic modeling and suggested next steps
 - The model is intended to be illustrative and not inclusive of all policy features that may be offered by an insurer or inclusive of detailed modeling considerations

Table of Contents

Introduction

- Overview
- Background

Model Objectives

- Principle-Based Approach
- Risk Categories and Policy Changes
- Prototype Model

Model Description

- Model Alternatives
- Functionalities
- Model Structure
- Process
- Strengths and Weaknesses

Modeling Results

- Calibration
- Discussion of Results
- **■** Future Refinements and other Model Considerations
- Appendices

Model Objectives

- The work group identified the following objectives for a principle-based model to evaluate LTC liabilities:
 - Ability to quantify the degree of variability of results, expose to entire work group;
 - Appropriately address the major categories of risk associated with LTC insurance;
 - Account for dynamic changes of the actions taken on the policies; and
 - Serves as a prototype with adequate functionality from which refined models can be developed.

Objective.

Model Objectives

Risk categories and mitigation

A stochastic model that simulates the future financial performance of a block of LTC insurance policies over a range of scenarios can produce more useful results for principle-based analysis than the traditional point estimates from a deterministic model

Prototype

- Excel
- Stochastic assumptions for active mortality, lapse, incidence, recovery, and disabled mortality
- Simplifying assumptions
- Base model does not assume management rate action in adverse scenarios

Model Description

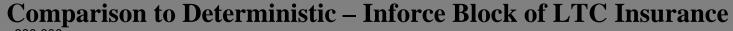
- Model alternatives considered
 - Random walk by policy
 - Random walk by duration
 - Simulation with pre-process look up
 - Waiting time (this is the approach taken)
- Functionalities, structure, and process
 - Role of hazard rates
 - \blacksquare The survival rate of an event m for a short interval k can be converted to a hazard rate as follows:

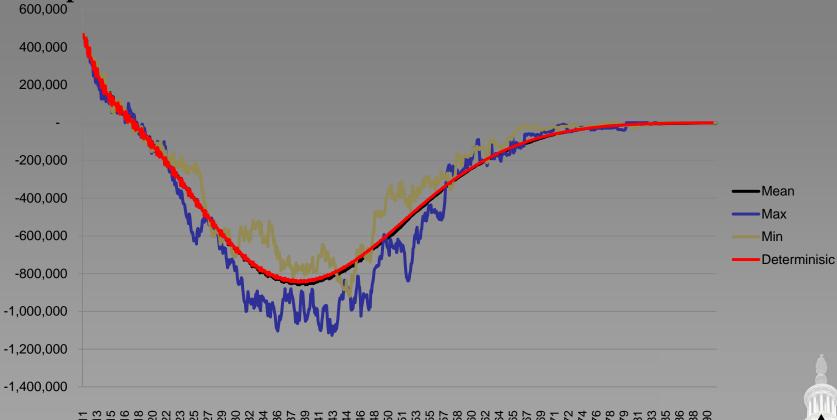
$$H^{m}_{x+t} = \log_{k} p^{m}_{x+t}.$$

■ The hazard rates are additive to arrive at the total hazard rate. Thus the probability that a specific event occurs given an event is known to have occurred is:

$$H_{x+t}^m / \sum_{all s} H_{x+t}^s$$

Model Strengths and Challenges


Strengths


- Formulas are transparent in Excel
- Handle multiple risks in multiple states on a stochastic basis
- Can be enhanced to handle many other features such as disabled lives, policyholder behavior, etc.

Challenges

- Excel has limited ability to automatically distribute processing over a server farm. This caused very lengthy run times (e.g., a single trial for 6,000 policies took approximately one hour on most workstations)
- Excel workbook size limited the number of trials run at one time
- Only process risk measure
- Stochastic interest rate generators could not be easily integrated
- Validation of the model by comparison to a deterministic model was a lengthy process

Calibration of Cash Flows

Jul-11
Jul-13
Jul-14
Jul-18
Jul-25
Jul-25
Jul-33
Jul-33
Jul-60
Jul-35
Jul-35
Jul-60
Jul-67
Jul-68
Ju

Sample block of 6,000 policies

Data compiled by the by LTC PBR Work Group for final report

Results

Distribution Characteristics of PV of Cash Flow @ 4%

- Mean 87 m
- Maximum 106 m
- Minimum 72 m
- Std Dev 5.261 m
- Skewness 0.138209
- Kurtosis 0.168010

Sample Block of 6,000 Policies

Data compiled by the by LTC PBR Work Group for final report

Results

■ Sample block of 6,000 LTC insurance policies, CTE calculations

•	CTE 0 (GPV)	87m	100.0%
•	CTE 10	88m	101.2%
•	CTE 20	89m	102.1%
•	CTE 30	90m	102.9%
•	CTE 40	90m	103.8%
•	CTE 50	91m	104.8%
•	CTE 60	92m	105.8%
	CTE 70	93m	107.1%
	CTE 80	95m	108.6%
	CTE 90	97m	110.8%
	CTE 95	98m	112.8%
	CTE 99	103m	117.8%

Note: CTE 90, for example, is equal to the average of the worst 10% of scenarios, each scenario cash flows discounted at 4%

Data compiled by the by LTC PBR Work Group for final report

Future Refinements and Model Considerations

- Product features
- Management rate action
- Other
 - Accommodate policy feature or benefit changes initiated by a policyholder
 - Incorporate trends (other than those related to rate increases) in the model. This includes, for example, changes in utilization pattern for claimants of policies with inflation protection features
 - Dynamically combine interest rate scenarios with liability scenarios to reflect policyholders' behavior and expenses under various interest rate environments
 - Run disabled lives simulation as of the projection date for existing claims in a block of LTC policies
 - Accommodate combination policies
 - Excel platform
- Parameter risk assumption variability

Staff Contact Information

David Linn

Health Policy Analyst

American Academy of Actuaries

1850 M St., NW (Suite 300)

Washington, DC 20036

linn@actuary.org

